In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein
نویسندگان
چکیده
Hepatitis B virus (HBV) infection has persisted as a major public health problem due to the lack of an effective treatment for those chronically infected. Therapeutic vaccination holds promise, and targeting HBV polymerase is pivotal for viral eradication. In this research, a computational approach was employed to predict suitable HBV polymerase targeting multi-peptides for vaccine candidate selection. We then performed in-depth computational analysis to evaluate the predicted epitopes' immunogenicity, conservation, population coverage, and toxicity. Lastly, molecular docking and MHC-peptide complex stabilization assay were utilized to determine the binding energy and affinity of epitopes to the HLA-A0201 molecule. Criteria-based analysis provided four predicted epitopes, RVTGGVFLV, VSIPWTHKV, YMDDVVLGA and HLYSHPIIL. Assay results indicated the lowest binding energy and high affinity to the HLA-A0201 molecule for epitopes VSIPWTHKV and YMDDVVLGA and epitopes RVTGGVFLV and VSIPWTHKV, respectively. Regions 307 to 320 and 377 to 387 were considered to have the highest probability to be involved in B cell epitopes. The T cell and B cell epitopes identified in this study are promising targets for an epitope-focused, peptide-based HBV vaccine, and provide insight into HBV-induced immune response.
منابع مشابه
A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach
Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...
متن کاملIn silico Analysis of Pasteurella multocida PlpE Protein Epitopes As Novel Subunit Vaccine Candidates
Background: Pasteurella multocida is a Gram-negative, non-motile, non-spore forming, and aerobic/anaerobic cocobacillus known as the causative agent of human and animal diseases. Humans can often be affected by cat scratch or bite, which may lead to soft tissue infections and in rare cases to bacteremia and septicemia. Commercial vaccines against this agent include inactivated, live attenuated,...
متن کاملIn silico design a multivalent epitope vaccine against SARS-CoV-2 for Iranian populations
Background: Due to high genetic variation in human leukocyte antigen )HLA( alleles, epitope-based vaccines don’t show equal efficacy in different human populations. therefore, we proposed a multi-epitope vaccine against SARS-CoV-2 for Iranian populations. Materials and Methods: For this purpose, the proteins without allergenicity and high antigenicity as well as conservancy level from SARS-CoV...
متن کاملOprF and OprL Conjugate as Vaccine Candidates against Pseudomonas aeruginosa; an in Silico Study
Introduction: Vaccine studies against Pseudomonas aeruginosa have often focused on outer membrane proteins (OPRs) due to their potent stimulation of the immune response. Using major outer membrane proteins of cell walls (mOMPs) of P. aeruginosa and other Gram-negative bacteria actively stimulate the immune system without any toxic side effects. Moreover, these antigens show immunological cross-...
متن کاملIn silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate
Objective(s):Brucellosis, especially caused by Brucella melitensis, remains one of the most common zoonotic diseases worldwide with more than 500,000 human cases reported annually. The commonly used live attenuated vaccine in ovine brucellosis prophylaxis is B. melitensis Rev1. But due to different problems caused by the administration of this vaccine, a protective subunit vaccine against B. me...
متن کامل